Fuzzy sliding-mode control with rule adaptation for nonlinear systems

نویسندگان

  • Lon-Chen Hung
  • Hung-Yuan Chung
چکیده

A fuzzy sliding-mode control with rule adaptation design approach with decoupling method is proposed. It provides a simple way to achieve asymptotic stability by a decoupling method for a class of uncertain nonlinear systems. The adaptive fuzzy sliding-mode control system is composed of a fuzzy controller and a compensation controller. The fuzzy controller is the main rule regulation controller, which is used to approximate an ideal computational controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the adaptive fuzzy controller. Fuzzy regulation is used as an approximator to identify the uncertainty. The simulation results for two cart–pole systems and a ball– beam system are presented to demonstrate the effectiveness and robustness of the method. In addition, the experimental results for a tunnelling robot manipulator are given to demonstrate the effectiveness of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

Robust adaptive sliding mode control using fuzzy modelling for a class of uncertain mimo nonlinear s - Control Theory and Applications, IEE Proceedings-

A practical design that combines a fuzzy adaptation technique with sliding mode control to enhance robustness and sliding performance in a class of uncertain MIMO nonlinear systems is proposed. Using an online adaptation scheme, a fuzzy sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold. The hitting control is appended to ensure th...

متن کامل

Distributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems

This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...

متن کامل

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

DIRECT ADAPTIVE FUZZY PI SLIDING MODE CONTROL OF SYSTEMS WITH UNKNOWN BUT BOUNDED DISTURBANCES

An asymptotically stable direct adaptive fuzzy PI sliding modecontroller is proposed for a class of nonlinear uncertain systems. In contrast toother existing approaches of handling disturbances, the proposed approachdoes not require this bound to be known, only requiring that it exists.Moreover, a PI control structure is used to attenuate chattering. The approachis applied to stabilize an open-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Systems

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2006